URL: http://www.elsevier. nl/locate/entcs/volume22.html 33 pages

From Fairness to Chance

Luca de Alfaro

Department of EECS
University of California at Berkeley
Berkeley, CA 94720-1770, USA
dealfaro@eecs.berkeley.edu

Abstract

Fairness is a mathematical abstraction used in the modeling of a wide range of
phenomena, including concurrency, scheduling, and probability. In this paper, we
study fairness in the context of probabilistic systems, and we introduce probabilistic
fairness, a novel notion of fairness that is itself defined in terms of probability. The
definition of probabilistic fairness makes it invariant with respect to synchronous
composition, and facilitates the design of model-checking algorithms for quantitative
properties of probabilistic systems. We compare probabilistic fairness with other
notions of fairness for probabilistic systems, and we provide algorithms that solve
the verification problem for various classes of probabilistic properties on finite-state
systems with fairness.

1 Introduction

The use of formal methods for the analysis and verification of systems re-
quires a mathematical model of the system being studied. Many system mod-
els include nondeterminism, which enables the representation of interleaving
concurrency, and the modeling of schedulers and of partially unknown or un-
specified components. Fairness is a constraint on the resolution of the non-
deterministic choices, and it has been introduced to represent a multiplicity
of related phenomena, such as the progress of threads of computation, gen-
eral environments, the behavior of probabilistic choice, and the impartiality
of arbiters and schedulers. Several notions of fairness have been presented,
each tailored to the modeling of some class of phenomena; [20,15,19] present
general overviews.
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In the context of non-probabilistic systems, a notion of fairness is usually
defined by specifying the set ¢ of system paths that are considered fair, where
a “path” is defined as an infinite sequence of states, or as an infinite sequence
of alternated states and transitions. The semantics of the system is defined in
terms of the subset ¢ of fair paths only: the paths outside ¢ are not interpreted
as possible system behaviors. For example, consider a system in which at a
state s the choice between two alternatives a¢ and b is possible, and assume
that this choice is required to be fair. The two alternative might represent
the choice of servicing the requests coming from either one of two processes.
According to the notion of strong fairness, the set ¢ of fair paths consists of
all the paths that choose both a and b infinitely often, whenever s is visited
infinitely often. In the example, strong fairness enables the study of the system
under the assumption that the scheduling algorithm does not eventually cease
to schedule the requests originating from one of the two processes. Other
notions of fairness, such as weak fairness and «-fairness, are specified by
providing different definitions for the set ¢ of fair paths [21,24].

In this paper, we study systems in which both probabilistic and nondeter-
ministic behavior coexist; these systems will be called for brevity probabilistic
systems. As in other types of systems, fairness in probabilistic systems is
also a constraint on the resolution of the nondeterministic choices. However,
fairness in probabilistic systems is defined differently than in purely nondeter-
ministic systems, since the apparatus required to deal with both probabilistic
and nondeterministic choice is more complex than the one required for non-
determinism alone.

Consider a system where nondeterministic choice coexists with probabilis-
tic one, and assume that at a given state s the nondeterministic choice between
two alternatives a and b is possible. Following [16,31], we model the resolution
of the nondeterministic choice by a scheduler — that we call policy — which
at s selects one of a, b. Unlike [22,16,31], however, we consider randomized
policies rather than deterministic ones, following the customary approach in
the theory of Markov decision processes [14], as well as the approach of [29,28].
Each time the system is at s, the (randomized) policy dictates the probabil-
ities of choosing a and b, possibly as a function of the system’s past. Since
nondeterminism is resolved by the policies, in probabilistic systems fairness
is usually expressed by specifying a set ® of fair policies. Again, during the
analysis of system properties, only fair policies are considered.

The notions of fairness that have been proposed so far for probabilistic
systems are the direct counterparts of notions proposed for purely nondeter-
ministic systems [16,31,17]. Given a notion of fairness for nondeterministic
systems specified as a set ¢ of fair paths, the corresponding notion for prob-
abilistic systems is obtained by defining a policy to be fair iff all the paths
arising from the policy (except perhaps for a set of measure 0) belong to .
Hence, each notion of fairness ¢ defined as a set of paths gives rise to a cor-
responding notion ®(¢) defined on policies. Consider again our system where
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the alternatives a and b must be fairly chosen at a state s. According to the
notion of fairness that corresponds to strong fairness, a policy is fair iff all the
paths that arise from it (except perhaps for a set of measure 0) are such that,
if s is visited infinitely, both a and b are chosen infinitely often. This is one
of the notions of fairness described in [31,17].

In this paper we introduce a novel notion of fairness, called probabilistic
fairness. Unlike previous notions of fairness, probabilistic fairness is a local
notion of fairness: it is expressed directly in terms of the behavior of the
policies at the various states, and it has no counterpart as a requirement on
paths. According to probabilistic fairness, a policy is fair iff there is an ¢ > 0
such that all fair alternatives are chosen with probability at least € by the
policy. In our previous example, a policy is fair iff the probability with which
the alternatives a and b are chosen at s is bounded below by € > 0. We note
that, while £ can vary from one policy to the other, it must be constant for each
policy, rather than dependent on the state of the system or on its past history.
Probabilistic fairness entails several benefits over previous notions of fairness
for probabilistic systems. These benefits are both semantical, concerning the
modeling of systems, and algorithmic, concerning the algorithms for system
verification.

1.1 Semantical benefits

Probabilistic fairness offers three semantical benefits: it provides a simple
way of representing probabilistic choice while abstracting from the numerical
values of probability; it exhibits a simple form of invariance with respect to
synchronous composition; and it enables the representation of threads of com-
putation in which the ratios between the speeds of computation is unknown,
but bounded.

Representation of probabilistic choice
Representing the qualitative properties of probabilistic choice, while abstract-
ing from the values of the transition probabilities, has two purposes. First, it
enables the modeling of probabilistic behavior in the cases in which the prob-
abilities of some alternatives are not known, except for the fact that they are
positive. This can be useful whenever the probabilities have not been measured
accurately, or when the portion of the system giving rise to the probabilistic
behavior has not been designed yet. Second, probability provides a reference
model for schedulers that are completely impartial with respect to the in-
coming requests. Indeed, several fairness notions that have been introduced
to model schedulers, such as strong fairness, event and process fairness, and
interaction fairness, exclude the set of paths that have 0 probability under
the purely probabilistic scheduling of the steps, events, or process interactions
that occur along the paths [15,19].

The problem of finding a notion of fairness that corresponds to the quali-
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tative properties of probabilistic choice was considered already in [22]. With
respect to the verification of linear-time temporal logic properties (and more
generally, membership in w-regular languages), the problem was settled with
the introduction of a-fairness, a fairly complex notion of fairness [24]. Prob-
abilistic fairness offers a straightforward solution to this problem, since it is
defined directly in terms of probabilities. While the adoption of probabilistic
fairness seems to contradict the goal of eliminating probability from the sys-
tem model, we will show that the model-checking algorithms for probabilistic
fairness do not incur any additional complexity due to its probability-based
definition.

Synchronous composition

Synchronous composition is a basic step in the modeling and verification of sys-
tems: it can be used to construct the complete system from smaller component
systems, and the synchronous composition of the system with an automaton
derived from the specification is at the heart of several verification algorithms
[31,23,5,6]. Probabilistic fairness exhibits a simple invariance property with
respect to synchronous composition.

If two systems P and Q are non-interacting, and if a policy mp for P 1is
probabilistically fair, then the policy mp|g obtained by projecting mp onto
the synchronous composition P||Q of P and Q is also probabilistically fair.

This invariance property states that the fairness of a policy for a given system
does not depend on whether the system is considered in isolation, or together
with other non-interacting systems. While some notions of fairness satisfy
the above invariance (notably a-fairness), this is not the case for some of the
most common notions, such as weak and strong fairness [21]. The fact that
probabilistic fairness satisfies this invariance property is a direct consequence
of the local nature of its definition.

Progress of independent threads of computation

Probabilistic fairness enables the modeling of the progress of independent
threads of computation, in which the ratio between the speeds of computation
is unknown, but bounded. In the context of timed probabilistic systems,
probabilistic fairness also enables the modeling of transitions having finite,
but unknown, average delay, as discussed in detail in [11]. In these respects,
probabilistic fairness is related to finitary fairness, a (non-probabilistic) notion
of fairness proposed for reasoning about distributed algorithms [1].

1.2 Algorithmic benefits

The solution of many verification problems for probabilistic systems consists
in determining a policy that is optimal (or pessimal) with respect to the prop-
erty of interest, and in checking whether the property holds for this optimal or
pessimal policy. When fairness is introduced in the system model, the optimal
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(or pessimal) policy must be chosen from the set of fair policies, rather than
from the set of all policies. However, the optimization methods available from
the theory of Markov decision processes compute the optimal and pessimal
policies in the set of all policies, and they cannot be easily adapted to conduct
the optimization in the smaller set of fair policies [14,3]. To show that the
(unconstrained) solution of an optimization problem can be used in the veri-
fication of fair probabilistic systems, we have to show that the optimal values
of the quantities of interest can be realized or at least approximated by a set
of fair policies, following the idea of [22,17].

The local definition of probabilistic fairness facilitates the construction of
such approximating policies, by ensuring that the convex combination of a
generic policy and a fair policy is a fair policy. To illustrate this point, assume
that the policies are memoryless, i.e. that the probabilities with which the
alternatives are chosen depend only on the current system state, and denote
by m(s)(a) the probability with which alternative a is selected at state s.
Given a generic policy 7, and a fair policy 7y, their convex combination 7|x]
for 0 < z <1 is defined by

mlz](s)(a) = (1 = z) my(5) (@) + 2z ms(s)(a)

for all states s and all alternatives a. For 0 < z < 1, policy «[z] is fair,
and for x = 0 it coincides with 7,. Consider a function A from policies to
real numbers; the value h(7) can represent for example a performance index
of the system under policy 7. To show that the value of the performance
index corresponding to 7, can be approximated by fair policies, it suffices to
prove that lim,_,o h(7[z]) = h(7[0]) = h(m,). Often, this proof can be carried
out using standard methods from calculus and linear algebra. With minor
variations, this approach to the construction of approximating policies will be
used to justify all the verification algorithms presented in the paper.

1.8 Paper outline

After providing a standard definition for probabilistic systems, we introduce
three notions of fairness. The first one is probabilistic fairness; the second one
is unbounded fairness, a weaker variant of probabilistic fairness that shares
some of its properties, and the third one is path fairness, which is essentially
the notion studied in [31,17]. We show that probabilistic and unbounded
fairness, unlike path fairness, are invariant with respect to synchronous com-
position. We then compare the three notions of fairness with respect to three
classes of properties:

Maximum acceptance probability. This class of properties concerns the
maximum probability with which a path satisfies the Rabin acceptance con-
dition of an w-automaton, and it is related to the maximum probability of
satisfying linear-time temporal logic formulas.
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Minimum reachability cost. This class of properties concerns the mini-
mum expected cost for reaching a subset of target states. The cost can
represent various quantities of interest, such as the amount of time elapsed
before the target is reached.

Maximum long-run average outcome. This class of properties is related
to the long-run average outcome of system tasks, such as the request for a
resource, or the sending of a message. Long-run average properties enable
the specification of many classical performance and reliability indices [10].

We show that probabilistic fairness is equivalent to path fairness with respect
to the maximum acceptance probability and the long-run average outcome
classes of properties, and it is equivalent to unbounded fairness with respect
to the minimum reachability cost class. Finally, for each of these notions
of fairness and classes of properties we present model-checking algorithms
that can be used to solve the verification problem on finite-state probabilistic
systems.

2 Probabilistic Systems and Fairness

Our model for probabilistic systems is based on Markov decision processes
(MDPs). An MDP is a generalization of a Markov chain in which a set of
possible actions is associated with each state. To each state-action pair cor-
responds a probability distribution on the states, which is used to select the
successor state [14]. Markov decision processes are closely related to the prob-
abilistic automata of [25], the concurrent Markov chains of [31], and the simple
probabilistic automata of [29,28].

Given a countable set C' we denote by D(C) the set of probability distribu-
tions over C, i.e. the set of functions f : C'+ [0, 1] such that ) _. f(z) = 1.
An MDP P = (S, Acts, A, p) consists of the following components:

(i) A set S of states.
(ii) A set Acts of actions.

(iii) A function A : S +— 24¢ which associates with each s € S a finite set
A(s) C Acts of actions available at s.

(iv) A function p : S x Acts — D(S), which associates with each s,t € S and
a € A(s) the probability p(s, a)(t) of a transition from s to ¢ when action
a is selected.

We will often associate with an MDP additional labelings to represent quan-
tities of interest; the labelings will be simply added to the list of components.

A path of an MDP is an infinite sequence 6 : sg, ag, S1, a1, ... of alternating
states and actions, such that s; € S, a; € A(s;) and p(s;, a;)(si+1) > 0 for all
1 > 0. For ¢ > 0, the sequence is constructed by iterating a two-phase selection
process. First, an action a; € A(s;) is selected nondeterministically; second,
the successor state s;.; is chosen according to the probability distribution
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p(si,a). Given a path 6 : sg,ag,81,0a1,... and k£ > 0, we denote by X (0),
Y5 (0) its k-th state s, and its k-th action ay, respectively.

For every state s € S, we denote by ©; the set of (infinite) paths having
s as initial state, and we denote by X, the set of finite path prefixes having
s as initial state. The set of all paths is © = (J,.4©,. Given two paths
(or path prefixes) 6; and 6, we denote by #; < 6, the fact that 6; is a
prefix of f,. Following the classical definition of [18], we let B, C 2°¢ be the
o-algebra of measurable subsets of ©,, defined as the smallest algebra that
contains all the cylinder sets {6 € ©, | o0 <X 0}, for o that ranges over ¥, and
that is closed under complementation and countable unions (and hence also
countable intersections). The elements of B are called events, and they are
the measurable sets of paths to which we will associate a probability.

2.1 Policies

To assign a probability to the events in B;, for all s € S, we need to spec-
ify the criteria with which the actions are chosen. To this end, we use the
concept of policy [14], closely related to the schedulers of [31] and to the ad-
versaries of [29,28]. Denoting with ST the set of non-empty finite sequences
of states, a policy 7 is a mapping 7 : ST — D(Acts), which associates with
each sequence of states sg, s1,...,8, € ST and each a € A(s,) the proba-
bility 7 (s, $1, - - -, $n)(a) of choosing a after following the sequence of states
S0, 81, - -+, 8n. We require that m(sg, s1,...,8,)(a) > 0 implies a € A(s,): a
policy can choose only among the actions that are available at the state where
the choice is made. We indicate with II the set of all policies. According to this
definition, policies are randomized, differently from the schedulers of [31,23],
which are deterministic. The consideration of randomized policies is funda-
mental to the further developments of this paper. From these definitions, the
probability of following a finite path prefix s¢, ag, s1, a1, ..., S, under policy
7 € 1l is given by

H p(si, ai) (sit1) 7 (S0, - - -, 8:) (i) -

These probabilities for prefixes give rise to a unique probability measure on
Bs;. For A € [J,cqBs, we write Prj(.A) to denote the probability of event
A N B; starting from the initial state s € S under policy 7. For example,
given a set R C S of states, we denote by

(OR)={0€©|3k>0.X(0) € R}

the event of reaching R. The probability of reaching R starting from state s
under policy 7 is then Prf(OR). Similarly, for all s € S, if f : O, — R is a
measurable function, we denote by E7{f} the expectation of f from state s
under policy 7. For example, given a set R C S, for all paths # € © we denote
by

Tr(0) = min{k | X;(0) € R}
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the first-passage time of # in R, with the convention that min{) = co. For all
s € S the function Ty : ©; — IR is measurable, and the expected first-passage
time in R from s € S under policy 7 is written as Ef{Tr}. Note that we
omitted the argument 6 of the random function Tx(6): for conciseness, here
and in the following we omit the generic path 6 that is the argument of random
functions whenever we take expectations or probability measures.

2.2 Fairness

Given an MDP P = (S, Acts, A, p), a fairness constraint F for P is a mapping
F : S~ 24¢ that associates with each s € S a subset F(s) C A(s) of fair
actions at s. The intended meaning is that the choice at s among actions
in F(s) should be “fair.” The various notions of fairness differ in the way in
which this “fairness” is defined. We denote by SAPairs(P) = {(s,a) | s €
S Aa € A(s)} the set of state-action pairs of the MDP [14]. Given a path 6,
we denote by

InfS(0) = {s € S |3 k. Xx(0) = s}
InfSA(0) = {(s,a) € SAPairs(P) |3 k . (Xx(0), Ys(0)) = (s,a)}

the sets of states and of state-action pairs that are repeated infinitely often

along 6, where the notation 030 k is an abbreviation for “there are infinitely
many distinct values for £”. For each policy and each initial state s € S, the
functions InfS : ©, — 2% and InfSA : ©, — 2(5%4¢t5) are measurable.

Path fairness

Path fairness essentially coincides with the fairness considered in [31], and
is called weak fairness in [17]. We say that a policy 7 is path-fair if, for
all initial states, the paths that arise under 7 satisfy with probability 1 the
following condition: whenever a path wvisits infinitely often a state t, each
action in F(t) is chosen infinitely often at t. More precisely, 7 is path fair
with respect to constraint F if, for all initial states s € S and all state-action
pairs (t,a) € SAPairs(P) with a € F(t),

Pr](t € InfS implies (t,a) € InfSA) =1.

We call this notion of fairness path fairness because the fairness of a policy is
established on the basis of the paths that arise under the policy. In contrast,
our next notions of fairness refer directly to the policies.

Probabilistic fairness and unbounded fairness

Probabilistic fairness is a local notion of fairness that refers directly to the
behavior of the policies a the various system states. Denote by S* the set of
finite (and possibly empty) sequences of states. A policy 7 is probabilistically
fair with respect to the constraint F if there is an € > 0 such that 7 (53, s)(a) >

8
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¢ for all 5 € S* all s € S and all @ € F(s). In other words, a policy 7 is
probabilistically fair with respect to F if there is a lower bound ¢ > 0 for the
probability of choosing a fair action, throughout the system’s behavior [8,11].
This requirement can also be written as:

inf{r(5,5)(a) | 5€ S*As€SAac F(s)} >0.

In the definition of probabilistic fairness, the bound ¢ can depend on the policy
7, but it cannot depend on the past sequence 3 of states. If € could depend on
3, then probabilistic fairness would reduce to a very weak notion of fairness,
which we call unbounded fairness. A policy 7 is unboundedly fair with respect
to the constraint F if we have

7(5,s)(a) >0
for all 5 € §*, all s € S, and all @ € F(s).

3 Relations Among Fairness Notions

Given an MDP P and a fairness constraint F for P, we denote by PathF (P, F),
ProbF (P, F), and UnbF (P,F) the sets of policies that are fair according to
path, probabilistic, and unbounded fairness, respectively. We also indicate
with NoF(P) = II the set of all policies, corresponding to the notion of no
fairness. In the following, we omit the arguments P and F whenever they
can be univocally understood from the context. The following preliminary
proposition characterizes the hierarchy between these three fairness notions.

Proposition 1  The following assertions hold:

(i) For all MDPs P and all fairness constraints F, we have
ProbF(P,F) C PathF(P,F), and ProbF(P,F) C UnbF(P,F).

(ii) Unbounded fairness and path fairness are incomparable:
(a) There is an MDP P and a fairness constraint F such that
PathF(P,F) L UnbF(P,F).
(b) There is an MDP P and a fairness constraint F such that
UnbF(P,F) ¢ PathF(P,F).

Proof. Assertion (i) follows immediately from the definitions of fairness.

The MDP P of Figure 1 with its fairness constraint Fp is a witness for
assertion (a). In fact, consider the policy 7 defined for all k¥ > 0 by 7(s*)(a) =
1if k is even, and 7(s*)(a) = 0 if k is odd (where s* is the sequence consisting
of k states s). Then 7w € PathF (P,Fp) and 7 & UnbF (P, Fp).

The MDP Q@ of Figure 1 with its fairness constraint Fg is a witness for
assertion (b). In fact, consider the policy 7 defined for all k£ > 0 by 7(s*)(a) =
2-1/2" From this definition follows immediately that 7 € UnbF(Q, Fg). To
see that m € PathF(Q, Fg), it suffices to note that under policy 7, a path
that starts from s is confined to s (and takes only action a) with probability

9
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Fig. 1. Two MDPs P and Q. The MDPs are deterministic, i.e. for each state and action,
there is only one successor state, indicated in the diagram by a directed edge labeled
with the action. The MDP P = (S, Acts, A, p) is defined by S = {s}, Acts = {a, b},
A(s) = {a,b}, and p(s,a)(s) = p(s,b)(t) = 1. The MDP P has an associated fairness
constraint Fp defined by Fp(s) = {a,b}. The MDP Q is similarly defined, has it an
associated fairness constraint Fg defined by Fg(s) = {b}, and Fg(t) = 0.

1/2. un

3.1 Fairness and synchronous composition

Path fairness does not posses the same invariance properties of probabilistic
and unbounded fairness with respect to synchronous composition. In fact,
it is possible that a policy that is path fair for an MDP when considered in
isolation may not be path fair when the same MDP is considered composed
synchronously with a non-interacting automaton. Since the MDP and the
automaton do not interact, this means that the notion of path fairness is
fragile, and the path fairness of a policy depends on the “environment” at large
in which the system is studied. This undesirable characteristic is not shared
by either probabilistic or unbounded fairness. The synchronous composition
of an MDP and an automaton is important in verification, and the notion
of a-fairness has been in part proposed to overcome this limitation of path
fairness [24].

There are many definitions for synchronous composition, depending on the
methods chosen for synchronizing the systems being composed. To emphasize
that the phenomenon is independent of the particular definition adopted, we
focus here on what is perhaps the simplest form of synchronous composition:
the synchronous product between an MDP and a deterministic finite-state au-
tomaton with singleton input alphabet, where the MDP and the automaton
are non-interacting. Even though this type of synchronous product is thor-
oughly trivial, it suffices to expose the different behavior of the various fairness
notions.

Given an MDP P = (S, Acts, A,p) and an automaton Q = (7,0) with
d : T — T, we define their synchronous product to be the MDP P||Q =
(S x T, Acts, B, q), where:

o forall s € S and t € T, we have B(s,t) = A(s).

o foralls, s’ € S)allt,t' € T, and alla € A(s), the probability p((s, t), a)(s',t')
is equal to p(s,a)(s’) if ' = §(¢), and is equal to 0 otherwise.

10
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Corresponding to a fairness constraint Fp for P, we define the fairness con-
straint Fp| g for P||Q by letting Fp|o(s,t) = Fp(s) forall s € S and t € T..
Corresponding to a policy 7p for P, we define the policy 7p|g for P||Q by
letting

7T73||Q((80, to), (31, tl), ‘e (Sn, tn)) = 7T7)(30, S1y.--y Sn)
for all n > 0, all s1,89,...,8, € ST, and all t1,t,,...,t, € TT. With this
notation, we can finally state the following theorem.

Theorem 1 The following assertions hold:

(i) Thereis an MDP P with a fairness constraint Fp, there is a deterministic
automaton Q with singleton alphabet, and there is a policy
mp € PathF(P, Fp) such that wp|q & PathF(P||Q, Fpo)-

(ii) Consider a fairness notion ® € {ProbF, UnbF}. For all MDPs P with
fairness constraint Fp, for all deterministic automata Q with singleton al-
phabet, and for all policies mp € ®(P, Fp), we have np|g € ®(P||Q, Fr|jo)-

Proof. For the first assertion, consider the MDP P and the automaton Q of
Figure 2. The portion of the synchronous product P||Q that is reachable from
the state (s1,%1) is also depicted in the figure. Consider the policy mp defined
for all s € S* by

_ 1 if there are an even number of s; in §;

Tp (8, 51)(a) = .
0 otherwise.

It is easy to check that mp € PathF' (P, Fp), while mp| o & PathF (P||Q, Fp| o)

The second assertion follows easily from the definition of probabilistic and
unbounded fairness. B &

3.2  Fairness and probabilistic properties

We analyze the relationship between the three fairness notions with respect to
three classes of properties: acceptance probability, reachability cost, and long-
run average outcome. In the following, we consider an MDP P = (S, Acts, A, p)
together with a fairness constraint F : S — 24¢% unless otherwise specified.

Acceptance probability

The first class of properties we consider concerns the maximum probability
with which a path satisfies a Rabin acceptance constraint. This maximum
probability is closely related to the the maximum probability of satisfying a
linear-time temporal logic formula [9]. A Rabin acceptance condition is a set
of pairs A = {(Q},Q"),...,(Q%,Qr)}, where @Y, QF C Sforalll <i<m
[27,30]. A path 6 of the MDP satisfies A, written § = A, iff thereis 1 <i <m
such that

InfS(0) € Qi ,
11
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Q
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(s3,12) (s3,t4)
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Fig. 2. An MDP P, and an automaton Q. The MDP is deterministic, and has an
associated fairness constraint F defined by F(s1) = {a,b}. The automaton simply
takes the only possible transition at every step. The portion of the synchronous product
P||Q reachable from the state (s1,%1) is also depicted.

InfSO)N QT #0.

Given a state s € S, an acceptance condition A, and a notion ® € {NoF,
PathF, ProbF, UnbF'} of fairness, the maximum acceptance probability Prf(®, A)
is defined as

(1) Prf(®, A) =supPri (0 = A) .

TED

Reachability cost
The second class of properties we consider concerns the expected cost of reach-
ing a set of target states in the MDP. To define this quantity, let ¢ : S x Acts —
IR" be a cost function that associates with each s € S and a € A(s) a cost
c(s,a) > 0. For all initial states s € S, target subsets R C S, and policies ,
the expected cost of reaching R from s under policy 7 is given by

Tr—1
2) v™(¢c, R) = ET { 3 (X, Yk)} ,

k=0
where Tp = min{k | Xy € R} is the first-passage time in R, with the con-
vention that min{) = co. For a notion ® € {NoF, PathF, ProbF, UnbF'} of
fairness, the minimum expected reachability cost from s to R is then defined
as
(3) v, (®,¢,R) = iIEICfI; vl (e, R) .
Note that v (®,c, R) is infinite if R cannot be reached with probability 1
from s. If the cost c(s,a) represents the time (or the expected time) spent at
s when action a € A(s) is selected, then the quantity v, (®, ¢, R) is equal to

12
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the minimum expected time from s to R. It is possible to consider also the
more general case of non-negative costs, as done in [8], at the price of some
mathematical complications.

Long-run average outcome

Long-run average properties are related to the average behavior of the system,
measured over an interval of time whose length diverges to infinity [8,10].
The specification of these properties is based on the notion of experiment.
An experiment is a finite portion of a path, which corresponds to a task of
interest for the performance or reliability analysis of the system. An example
of experiment consists in a request to access a shared resource, followed either
by a grant or a rejection. With each experiment is associated a numerical
value called the outcome of the experiment. The long-run average outcome of
the experiment is simply the average value of such outcomes, measured over
a period of time whose length diverges to infinity. In the previous example,
if we associate outcome 0 with the experiments that end with a rejection,
and outcome 1 with those that end with a grant, then the long-run average
outcome of the experiment is equal to the long-run fraction of requests that
are granted. The long-run average outcome is defined on the basis of two
functions R, W : S x Acts — R™ that associate with each s € S and a € A(s)
the following quantities:

* the average outcome R(s,a) > 0 obtained when selecting action a at s;

» a completion rate W(s,a) > 0, equal to the probability of completing the
experiment when selecting action a at s.

The restriction that W be non-zero is artificial, and in fact [8,10] considers the
general case of non-negative W (and arbitrary R). We adopted this restric-
tion because it leads to a considerably simpler mathematical treatment, while
preserving the essence of the argument. Given s € S, the functions R, W, and
a policy 7, the expected long-run average outcome HT(R, W) is defined as

n—1
(4) HJ (R, W) = Ef § lim sup =
k=0

For n < oo, the numerator of (4) represents the total outcome obtained during
the first n steps of the path, and the denominator represents the number
of experiments performed. The limit for n — oo of this ratio corresponds
therefore to the average outcome per experiment along a path, and HT (R, W)
is the expected value of this average outcome, computed considering all paths
from s. Given s € S, the functions R, W, and a notion of fairness & &
{NoF, PathF, ProbF, UnbF '}, we finally define the mazimum long-run average

13
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outcome by:
) H,(®, R, W) = sup HI (R, V)

TedP
The quantity defined in (4) is related to the average reward of semi-Markov
decision processes [26,3]. However, in the classical definition the limit and
expectation are exchanged, and the expectation is distributed in two expecta-
tions, one above and one below the fraction line. The difference between the
two definitions is discussed in [8].

3.2.1 Preview of the results
The behavior of the different notions of fairness with respect to the three above
classes of properties are summarized by the following theorem.

Theorem 2 For all states s, and for all A, resp. all ¢, R, resp. all R, W,
and for a general finite-state MDP with a fairness constraint, the following
relations hold:

(i) Acceptance probability:

Prf(NoF, A) = Prf(UnbF, A)
> Prf(PathF, A) = Pr}(ProbF, A)

(ii) Reachability cost:

vy (NoF, ¢, R) = v, (PathF,c, R)
< w, (UnbF,c, R) = v, (ProbF,c, R)

(iii) Long-run average outcome:

H,(NoF,R,W) = H,(UnbF, R, W)
> H,(PathF, R,W) = H,(ProbF, R, W)

Moreover, the inequalities in the above relations cannot in general be replaced
by equalities.

The above theorem tells us that probabilistic fairness sides with path fairness
in finite-state systems, except for the case of reachability cost. This theo-
rem also supports our claim that a probabilistic treatment of fairness is not
any harder than a traditional one, except for the case of minimum expected
reachability cost — and even in this case, we will show that working with
probabilistic rather than path fairness entails only minor additional compli-
cations.

The simplicity of Theorem 2 is due in part to the fact that the quanti-
ties in (1), (3) and (5) have been defined using sup and inf, and we have
not distinguished between the cases in which the suprema and infima can be
achieved or not (i.e. whether sup and inf can be replaced with max and min).

14
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This distinction would have blurred the insight provided by the theorem, and
would have required the use of more complex model-checking algorithms. Al-
gorithms that distinguish between these two cases for path fairness and Rabin
acceptance conditions have been presented in [17].

In the remainder of the paper, we provide model-checking algorithms for
all the combinations of the three notions of fairness and the three classes of
properties. The equalities in Theorem 2 follow from the fact that the notions
of fairness share the same model-checking algorithms. The fact that the in-
equalities cannot be in general replaced by equalities is shown by providing
counterexamples.

4 Tools for Fairness

In this section, we present some results on MDPs that will be used in the
construction and justification of the model-checking algorithms.

4.1  End components

Given an MDP P = (S, Acts, A, p), a sub-MDP is a pair (C, D), where C C S
is a subset of states and D : S — 24 is an action assignment, i.e. a function
that associates to each s € S a subset D(s) C A(s) of actions. The sub-MDP
corresponds thus to a subset of states and actions of the original MDP. With
each sub-MDP (C, D) we associate its set of state-action pairs

SAPairs(C,D) = {(s,a) € SAPairs(P) |s€ CANa € D(s)}.
Similarly, with each state-action set & C SAPairs(P) we associate a sub-MDP
(C, D) = SAPairs'(¢), defined by
C={seS|3ac€ Acts.(s,a) €t}
and, for all s € S, by
D(s) ={a € Acts | (s,a) € £} .
We say that a sub-MDP (C, D) is contained in a sub-MDP (C’, D’) if
SAPairs(C, D) C SAPairs(C', D) .

We say that a sub-MDP (C, D) is an end component (abbreviated by EC) if
the following conditions hold:

» Closure: for all s € C, alla € D(s), and all t € S,
if p(s,a)(t) > 0 then t € C.
* Connectivity: Let E = {(s,t) € C x C | Ja € D(s) . p(s,a)(t) > 0}.
The graph (C, E) is strongly connected.
Given a subset U C S of states, we say that an EC (C, D) is mazimal in U
if C C U, and if there is no other EC (C', D') with C' C U that properly

contains (C, D). We denote by Mec(U) the set of maximal ECs in U; this set
can be computed in time polynomial in the size of the MDP using simple graph

15



A L AML LAAVS

algorithms. In a purely probabilistic system, fair end components correspond
to the closed recurrent classes of the Markov chain underlying the system [18].
The significance of end components in the case of Markov decision processes
is stated by the following theorem.

Theorem 3 [8] For all s € S and all policies w, we have
P17 (SAPairs™ (InfSA) is an EC) = 1.

Given a fairness constraint F for P, we say that an end component (C, D) is
a fair end component (FEC) if the following condition holds, in addition to
closure and connectivity:

 Fuairness: For all s € C, we have F(s) C D(s).

We define containment and maximality for FECs as for ECs, and we denote
by MFec(U, F) the set of maximal FECs contained in U C S. Again, for each
U C S set MFec(U,F) can be computed in time polynomial in the size of
the MDP. The following theorem indicates that fair end components are the
corresponding concept to end components in presence of fairness.

Theorem 4 For all s € S and all 1 € ProbF U PathF, we have
P17 (SAPairs™' (InfSA) is a FEC) =1 .

This theorem was proved by [17] for path fairness, and by [8] for probabilistic
fairness. The proof for probabilistic fairness is in fact immediate: one needs
only examine the definition of probabilistic fairness to realize that Theorem 4
follows immediately from Theorem 3. Unbounded fairness behaves differently
from path or probabilistic fairness with respect to end components, as shown
by the following proposition.

Proposition 2  For every EC (C,D) and 0 < ¢ < 1, we can construct a
policy m(q) € UnbF such that for all s € C,

Pr"(@ (SAPairs™ (InfSA) = (C,D)) > q .

Proof. Given ¢, we construct an infinite sequence {r;(q)}i>o of real numbers
such that 0 < r;(¢g) < 1 for 4 > 0, and [[°,7i(¢) = ¢, by letting r;(q) =
¢1/2"™) . Then, policy 7(g) can be constructed as follows: at step i of the
path, if X; ¢ C, then 7 chooses uniformly at random an action from A(Xj;).
If instead X; € C, then 7 chooses each action in D(X;) with probability
rilg) | 1—=ri(q)
DXy JAXG)]

and each action in A(s) \ D(X;) with probability (1 — 7;(q))/|A(X;)|- It is
easy to check that the policy 7(q) thus constructed has the required property.
Note that policy 7(q) is history-dependent, i.e. its behavior at ¢ depends on
the prefix of path from the starting state s to ¢ (in this case, the dependence
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is through the length of the path prefix). 1 =

4.2 Parametric Markov chains

To help with the construction of sets of approximating fair policies, we present
some results on parametric Markov chains. In these chains the coefficients of
the transition matrix are expressed as a function of a parameter. We present
conditions that ensure that if the coefficients are continuous functions of the
parameter, then also the steady-state distribution of the chain depends con-
tinuously on the parameter.

Given a memoryless policy 7, we define a transition matrix P = [p,stes
corresponding to 7 by taking, for all s,¢ € S,

pse =Y m(s)(a)p(s,a)(1) -

a€A(s)

Recall that a sub-stochastic matriz is a matrix P = [ps4]stes such that
0<ps<1lfors,te S, and ), ¢ps; <1foralls e S[18]. The matrix corre-
sponding to a memoryless policy is sub-stochastic (in fact, it is also stochastic,
since ), ¢ sy = 1forall s € S). Given a sub-stochastic matrix P, the steady-
state (or limiting) matrix P* of P is defined by P* = lim,,_,o, £ Y7Z; P™ . The
following two propositions can be proved by linear algebra arguments [8], and
they provide sufficient conditions under which the steady-state distribution of
a Markov chain is a continuous function of a parameter. The first proposition
covers the case in which the closed recurrent classes of the chain do not depend
on the parameter.

Proposition 3 For a fized N, consider a family P(z) = [psi(2)]stes of
sub-stochastic matrices parameterized by a parameter x € I, where I C R
is an interval of real numbers. Assume that the Markov chain having P as
transition matrix has the same set of closed recurrent classes for all x € I.
Then, if the coefficients of P(x) depend continuously on z for x € I, also
the coefficients of the steady-state matriz P*(x) depend continuously on x for
z el

A similar result holds for chains in which there is a single closed recurrent
class (which may change as the parameter changes), and there is a fixed state
that is always in that class, for all values of the parameter. To state the
result, we say that a state is surely recurrent if the Markov chain has only one
closed recurrent class, and the state belongs to that class. In this case, the
steady-state matrix P* can be written as P* = 1'u, where 1 is the transpose
of a vector consisting of |S| 1’s, and u is the vector of the steady-state (or
limiting) distribution of the Markov chain.

Proposition 4  For a fited N, consider a family P(x) = [ps ()]s es of sub-
stochastic matrices parameterized by a parameter x € I, where I C IR s an
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interval of real numbers. Assume that there is a state 1 < ko < N that is surely
recurrent for all x € I. Then, if the coefficients of P(x) depend continuously
on x for x € I, also the coefficients of the steady-state distribution vector u(z)
depend continuously on x for x € I.

4.8 Unconditionally fair policy

In the following arguments, it will be useful to have a fixed policy that is
fair with respect to all notions of fairness discussed in this paper. Hence, we
denote by 7, the memoryless policy that at each state s € S chooses uniformly
at random an action a € A(s).

5 Acceptance Probability

In this section we prove Theorem 2, part (i), and we provide algorithms for
computing the maximum acceptance probability under the different notions
of fairness. The equalities in Theorem 2, part (i) are proved by showing that
the algorithms for the relative notions of fairness coincide.

5.1 Probabilistic fairness

The algorithm for computing the maximum acceptance probability for prob-
abilistic fairness is taken from [8]. By Theorem 4, with probability 1 the set
of states repeated infinitely often along a path form a FEC. Given a Rabin
acceptance condition A = {(QF,Q7),...,(Q%,Qr )} and a FEC (C, D), we
say that the FEC satisfies A (written (C, D) = A) iff there is 1 <7 < m such
that C C Q¥ and CNQT # (. If (C, D) satisfies A, and if a path starting from
C chooses at each s € C an action in D(s) uniformly at random, the path will
satisfy A with probability 1. Hence, let

Ru=|J{C|(C,D) is a FEC and (C, D) = A}

be the union of the sets of states of all the FECs that satisfy A. The set R4
can be computed more efficiently by

Ra=JU{C | (C,D) € MFec(@?) nCNQ; #0} .
=1

Once R4 is reached, it is easy to see that the acceptance condition can be
satisfied with probability 1 under a probabilistically fair policy. In fact, there
is a memoryless policy m, € ProbF such that Pri"(f = A) = 1 for every
s € Ry (see [8, §8] for the details of the construction of 7, inspired by [7]).
The surprising fact is that it suffices to compute the maximum probability
of reaching R4 under any policy, rather than under any probabilistically fair
policy, as stated by the following proposition (as shown for path fairness in
[17]).

18
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Proposition 5 For all s € S, we have Pr] (ProbF, A) = max,cn Pri(OR4).

In this proposition, GR 4 denotes the event of reaching R4, as defined in
Section 2.1. We write max e Pr} (OR,4) instead of sup, . Pri(OR4), even
though II is an infinite set, to underline the fact that there is a policy my € II
such that
Pri°(OR4) = sup Pri(OR4) .
well

A similar convention is used throughout the remainder of the paper. The
interest of Proposition 5 lies in the fact that the quantity max,cn Pr} (OR4)
can be computed using a well-known reduction to linear programming, which
leads to a polynomial-time algorithm [6].

Proof. To prove Proposition 5, we prove that for all s € S the following
equalities hold:
(6) sup Pri(0 = A)= sup Pri(OR4) = maxPri(OR,) .
7€ ProbF 7€ ProbF mell
To prove (6), we first note that

max Pri(OR4) > sup Pri(OR4)
mell wEProbF

> sup Pri(0EA).

nE€ProbF

The first inequality is immediate; the second follows from the fact that a path
from s follows with probability 1 a FEC, so that the probability of satisfying .A
without entering R 4 is 0. In the reverse direction, a result on Markov decision
processes establishes the existence of a memoryless deterministic policy m,
such that, for all s € S,

Pri¢(OR4) = max Pri(OR4)

(see for example [6], and for a detailed proof, [8, §3]). Let also B C S be the
set of states that cannot reach R4. From 7,, we construct the policy 7, that
coincides with 74 on S\ (R4 U B), with 7, on Ry, and with 77 on B. Since
7. and 7y coincide on C' = S\ (R4 U B), we have

(7) PIT*(OR,) = Pri#(0R.4) = maxPrl(OR.)

foralls € S. If 1, € ProbF, then the argument is easily concluded. Otherwise,
we construct a set of probabilistically fair policies that approximates m.. For
0 < z <1, define the memoryless policy 7[z] by:

7 (s)(a) ifse Ry

mlel(s)(a) =§ ,

(1 —2z)me(s)(a) +xmp(s)(a) otherwise.
It is easy to check that w[x] € ProbF for 0 < x < 1. Since for 0 < z < 1
policy 7[z] is just one of many probabilistically fair ones that tries to satisfy
A, we have
(8) sup Pri(f0 = .A) > lim Pr el (ORy) .

T—r

nEProbF
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To complete the argument, from (7) it remains to show that
(9) lim Pri¥(GR4) > P (OGRy) .
T—

To this end, denote by P(z) = [ps ()]s tes the matrix corresponding to w[z],
for 0 < z < 1. Note that P(0) is equal to the matrix P, corresponding to 7.
The closed recurrent classes of P(z) are constant for 0 < z < 1. In fact, for
0 < x < 1 the closed recurrent classes of 7[z] are all contained in B U R4,
and 7[x] does not depend on x in B U R4. Denoting by P*(x) = [p; ()]s tes
the steady-state matrix corresponding to P, we can write the reachability
probability of Ry for all s € S as

Pri?(ORA) = ) 0}4(2) -
teRA
From lim,_,o P(x) = P(0) = P,, by Proposition 3, we have lim, ,y P*(z) =
P}, from which we obtain (9), which together with (8) and (7) concludes the
argument. K 1

5.2 Path fairness

Since Theorem 4 holds both for probabilistic and for path fairness, the first
step in the computation of Prf(PathF, A) consists in computing the set R4 C
S, and it coincides with the first step of the computation of Pr}(PathF, A).
In fact, we want to prove that the algorithm for path fairness is the same as
the one for probabilistic fairness, as stated by the following proposition.

Proposition 6 For all s € S, we have
Prf(PathF, A) = max PrT(OGR4) = Prf (ProbF, A) .

mell

Proof. To prove the proposition, we prove that the following equalities hold
for all s € S:
(10) sup Pri(0 = A)= sup Pri(OR,4) =maxPri(OR,) .
n€ PathF 7€ PathF mEll
Again, in one direction the inequalities follow easily:

max Pri(OR4) > sup Pr(OR4)
mell w€PathF

> sup Pri(d = A).

w€PathF

In the other direction, note that probabilistic fairness implies path fairness
(Proposition 1). Thus, to prove that for all s € S
(11) sup Pri(0 = A) > maxPri(OR,)

7€ PathF mell

it suffices note that for 0 < z < 1, the policy 7[z] used in the proof of (8) and
(9) is also path fair. Hence, we can immediately duplicate the argument for
(8) and (9) for path fairness, leading to (11) and finally (10). & &
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5.3  Unbounded fairness

For unbounded fairness, we define the set R% by
Ry =|J{C | (C,D) is an EC and (C,D) = A}

:UU{C | (C,D) € Mec(QX)ANCNQ; #D} .

Differently from R4, the set R% is computed disregarding the fairness con-
straints of the MDP. In fact, to compute the maximum acceptance probability
for unbounded fairness, it turns out that it is not necessary to take fairness
into account, as the following proposition states.

Proposition 7 For all s € S, we have
Prf(UnbF, A) = max PrT(ORY) = Prf(NoF, A) .

Proof. The rightmost equality simply encodes the algorithm for maximum
acceptance probability without fairness [9]. Regarding the leftmost equality,
again in one direction the inequalities follow easily: for all s € S,

max Pr{(ORY) > sup Pri(ORY)
mell 7€ UnbF

> sup Pri(0 = A)

e UnbF

= Pri(UnbF, A) .

In the other direction, in analogy with the proof of Proposition 2, for all
0 <& <1 we can construct a policy 7[e] € UnbF such that for all s € S and
all finite path prefixes o ending in R%, we have

ProfEl0 = Ao <0)>1—¢.
Let also 74 be a policy such that
Pri4 (0 RY) = max Pri (ORY)
TE

and let B C S be the set of states that cannot reach R%. For all s € 5, all
a€ A(s),all0<z<1,all0<e <1, and all 5 € S*, we define policy 7|z, ]
by:

(1 —z)ma(s)(a) +zms(s)(a) ifse S\ (BURY);

[z, €](5,5)(a) = < mr(s)(a) if s € B;

mlel(s)(a) if s € RY.
For 0 < z,¢ < 1, we have w[x,¢] € UnbF; the result then follows by noting
that for all s € S we have

(12) liII(l) Pril®€l(ORS) = Pr7¢(ORY) = max Prl (ORY)
T—> e
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Fig. 3. Two MDPs P and Q. The MDP P is deterministic, and has an associated
fairness constraint Fp defined by Fp(s2) = {c}, and Fp(s1) = Fp(sz) = 0. The
MDP Q has an associated fairness constraint Fg defined by Fo(t1) = {a,b}, and
Folte) = Folts) = 0.

and hence
(13) Pri(UnbF,A) = sup Pri(0 = A)

w€UnbF

> lim lim Pr™®¢l(g = A)

z—0e—0
— T 7[xz,e] .
lny Pa7 (O 5
= Pr;rd (OR:4) )

as was to be shown. The proof of (12) and (13) follows the lines of the proofs
of Propositions 5 and 6. K N

Finally, the result of Theorem 2, part (i) follows by noting that R4 C RY,
and by comparing Propositions 5, 6, and 7.

5.4 A counterexample to equality

To see that the inequality in Theorem 2, part (i) cannot in general be re-
placed by equality, consider the MDP P of Figure 3, together with the ac-
ceptance condition A = {({s2},{s2})}. We have Pr] (ProbF, A) = 0 and
Pri (PathF, A) = 1.

6 Reachability Cost

In this section, we study the algorithms for computing the minimum reacha-
bility cost under the various notions of fairness, and in the process we prove
Theorem 2, part (ii).

Given a state s € S and an action a € A(s) for s, we denote by

dest(s,a) ={t € S| p(s,a)(t) > 0}
the set of possible successors of s when a is selected.

Since the costs are strictly positive, the cost from a state s € S to the target
set R C S can be finite only if R can be reached from s with probability 1.
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Hence, before presenting the algorithms for the various notions of fairness, we
present an algorithm that computes the set of states from which R can be
reached with probability 1, under a generic fairness constraint G : S +—» 24¢
(not necessarily coinciding with the constraint F of the MDP). The algorithm
is essentially the algorithm of [8], presented in an improved notation. To
present the algorithm, we define the predicate FApre(Y, X,G) over S, where
X,Y CSandG:S w24 by s = FApre(Y, X, G) iff:

Va € G(s) . dest(s,a) CY
A Ja € A(s) . (dest(s,a) CY A dest(s,a) N X #0) .

For RC S and G : S — 24 we then define Reach(R,G) by the p-calculus
formula:

(14) Reach(R,G) =vY . uX . (FApre(Y,X,G) VR) ,

where we have used the slightly improper notation of using R as a predicate

that holds exactly for the states in R. The following proposition can be proved
by induction on the iterations used to compute the u-calculus formula.

Proposition 8 Given an absorbing target set R C S and G : S +— 24 et

U be the largest subset of states of S that satisfies the following two properties:

o Foralls € U\ R and all a € G(U), we have dest(s,a) CU.

o For all s € U, there is a path from s to R in the graph (U, E), where
E={(s,t)eUxU | Ja € A(s) . [dest(s,a) C U At € dest(s,a)]} .

Then, U = Reach(R,G).

6.1 Probabilistic fairness

The following proposition establishes that Reach(R,F) is the set of states
from which the minimum cost to R converges.

Proposition 9 [8] We have v, (ProbF,c, R) < 0o iff s € Reach(R, F).

Proof. In one direction, Proposition 9 follows easily from Proposition 8.
In fact, consider the policy that at each ¢ € U chooses the action from
{a € A(t) | dest(t,a) C U} uniformly at random. Under this policy, R is
reached with probability 1 and within finite expected time from all s € U,
ensuring the convergence of the minimum cost. In the other direction, an in-
ductive argument that follows the structure of (14) shows that if s & U, then
Pri(OR) < 1 for all m € ProbF (see [13] for related arguments), which leads
to the result. 1 B

For all s € U, it is possible to compute the minimum cost to R under
no fairness assumptions v; (NoF, ¢, R) by solving a stochastic shortest path
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problem [4]. The following result states that this cost is equal to the cost
vy (ProbF,c, R) under probabilistic fairness. Together with Proposition 9,
this yields an algorithm for the computation of v, (ProbF,c, R) for all s € S.

Proposition 10 For all s € Reach(R, F) we have
vy (ProbF,c, R) = v (NoF,c, R) .

Proof. To prove this result, we again use the idea of approximating the (pos-
sibly unfair) policy corresponding to the stochastic shortest path problem with
a set of probabilistically fair policies. To this end, let U = Reach(R, F), and
let 4 be a memoryless policy such that for all s € U we have v7i(c, R) =
vy (NoF,c,R) (for the existence of such a policy, see [4]). Let also m, be
any memoryless policy that at all s € U chooses an action from {a € A(s) |
dest(s,a) C U} uniformly at random. For 0 < z < 1, we define the memory-
less policy 7[x] by, for all s € S and a € A(s),

(15) m[z](s)(a) = (1 = z) ma(s) (@) + zmu(s)(a) -
Note that for 0 < z < 1 we have 7[z] € ProbF. We want to show that for all
s € U, we have

(16) lim v™)(¢, R) = v™(c, R) .

z—0
From this equation, Proposition 10 follows easily. To show (16), first observe
that it suffices to focus on the set V' = U \ R, since neither 7, nor m, lead
from U to outside U, and since the reachability cost from R is 0. Denote
by P(z) = [pst(z)]stev the probability transition matrix corresponding to
the policy m[z] restricted to set V, and note that P(0) is the probability
transition matrix corresponding to m4. For 0 < z < 1 define also the vector

Z(.T) = [Zs(m)]sev by

z(x) = Y wlz](s)(a) c(s, a) .

a€A(s)
With this notation, from (2) for s € V and 0 < 2 <1 we have

vui¥l(e, R) =) P*()z(z) = (I - P(x)) 'z(x).

Since for 0 < z < 1 the matrix P(x) corresponds to a transient Markov chain,
we have det(I — P(z)) # 0 in this interval. Thus, for 0 < z < 1 the coefficients
of (I — P(z))~! are rational functions of z that have no poles in the interval
[0,1]. Since also z(z) is continuous in [0, 1], we finally have

lng 71 (c, ) = ling(T — P(e) " #(a)
— (I = P(0))"'2(0)
= vji(c, R)
thus proving (16). ® 1§
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6.2 Unbounded fairness

The equivalent of Proposition 9 can be proved also for unbounded fairness.
Proposition 11 [8] We have v; (UnbF, ¢, R) < oo iff s € Reach(R, F).

The rest of the analysis for the proof of Proposition 10 can then be carried
through unchanged, observing that for all 0 < x < 1 the policy 7[z] defined
by (15) is such that w[z] € UnbF. Hence, we obtain the following result.

Proposition 12  For all s € S, we have v, (UnbF,c, R) = v, (ProbF,c, R).

6.3 Path fairness

With respect to reachability cost, path fairness behaves differently from the
other two notions of fairness. The following proposition states that

v, (PathF,c,R) = v, (NoF,c, R)
for all s € S.

Proposition 13 Denote by (As.0) : S > 24 the empty fairness constraint.
For all s € S, the following assertions hold:

(i) If s & Reach(R, \s.0), then v, (PathF,c, R) = v, (NoF, ¢, R) = cc.
(i) If s € Reach(R, Xs.0), then v, (PathF, c, R) = v, (NoF,c, R).

Proof. Let U* = Reach(R, As.()). The first assertion is shown by proving that
if s ¢ U® then Pri(OR) < 1 for all policies 7, so that v7(c, R) = oo for all
policies 7. This result is proved using an inductive argument on the iterations
of (14).

For s € U*, the second assertion can be proved as follows. Let m; be the
memoryless policy such that v™ (¢, R) = v, (NoF, ¢, R). Define 7, to be the
(history-dependent) policy that coincides with 7, until R is reached, and that
chooses actions uniformly at random after R is reached. We have 7, € PathF":
in fact, under policy 7, any path that reaches R is fair, and the set of paths
that never reach R has probability measure 0. It is then immediate to check
that v74(c, R) = v7¢(c, R), leading to the result. ® B

6.4 Fairness and reachability

Together, Propositions 9, 10, 12, and 13 prove Theorem 2, part (ii). Intuitively,
Theorem 2, part (ii) can be interpreted as follows. Let

U = Reach(R, F)

U*® = Reach(R, Xs.0) .
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If U = U®, then under all three notions of fairness we can achieve a cost to R
that is arbitrarily close to that achieved by the optimal (not necessarily fair)
policy. If U C U*, on the other hand, the inequality in Theorem 2, part (ii)
is strict for some s € U®* \ U. In this latter case, the difference between
the behavior of probabilistic and unbounded fairness on one side, and path
fairness on the other, is essentially due to the following phenomenon. Suppose
that from a state s, in order to reach R, a path must visit a state ¢, with
A(t) = {a,b}. From ¢, action a leads to R, and action b leads to a set of states
that cannot reach R. Probabilistic and unbounded fairness require that a
policy be fair at all steps. Hence, under a probabilistically or unboundedly fair
policy, action b must be selected with non-zero probability, and the expected
cost to R will be infinite. On the other hand, path fairness does not impose
requirements on all steps of the paths. As long as a policy visits ¢ only finitely
often (which is the case here), the policy can deterministically select a at t,
and the expected cost to R will converge.

6.5 A counterexample to equality

To see that the inequality in Theorem 2, part (ii) cannot in general be replaced
by equality, consider the MDP Q of Figure 3. Let ¢ be the cost function that
associates 1 with all state-action pairs of the MDP, and let R = {t,}. We
have v, (NoF,c, R) = 1 and v;, (ProbF', c, R) = oo.

7 Long-Run Average Outcome

Before dealing with the case of general MDPs, we prove that the three notions
of fairness lead to the same maximum long-run average outcome, provided
the MDP is strongly connected. We say that the MDP P = (S, Acts, A, p)
is strongly connected if the graph (S, F) is strongly connected, where F =
{(s,t) € S xS | Ja € A(s) . p(s,a)(t) > 0}. The following proposition
summarizes several results for strongly connected MDPs.

Proposition 14 [8, §5] Consider a strongly connected MDP P with state
space S, together with outcome and cost functions R, W. The following as-
sertions hold.

o The value of Hs(NoF,R,W) does not depend on s € S. The common
value H(NoF, R,W) can be computed in time polynomial in the size of P
by solving a linear programming problem.

o There is a memoryless policy mq such that Hy(NoF,R,W) = HT (R, W)
for all s € S. Moreover, the transition probability matriz P, induced by 74
corresponds to a Markov chain having a single closed recurrent class.

Using this proposition, we can show that the maximum long-run average out-
come coincide for our three notions of fairness on strongly connected MDPs.
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Proposition 15 On a strongly connected MDP, for all s € S and
® € {ProbF, PathF, UnbF}, we have

Hy(®, R,W) = H(NoF,R,W) .

Proof. The proof of this proposition is once more based on approximating
the optimal policy in the absence of fairness with a set of fair policies. Let 74
be as in Proposition 14. For 0 <z <1, all s € S and all a € A(s), we define
the memoryless policy 7[z]| by
7lz](s)(a) = (1 — ) ma(s)(a) + zmp(s)(a) -

For 0 < z < 1, we have w[z] € ProbF. For 0 < z < 1, denote by P(z)
the transition probability matrix arising from =[z], and define the vectors
r(z) = [rs(z)]ses and w = [wy(z)]ses by

ro(@) = ) R(s,a)n[z](s)(a)

a€A(s)

w(@) = Y Wi(s,a)nlz](s)(a) .

a€A(s)

Denote by P*(z) = [p;,(2)]scs the steady-state probability distribution ma-
trix corresponding to P(x). By our choice of 74, the Markov chain corre-
sponding to P(0) has a single closed recurrent class C' C S. Since the MDP
is strongly connected, by definition of 7[z] all states of C' are surely recurrent
for 0 < x < 1. Hence, as a consequence of standard facts on Markov chains

we have
_ Ztesp:,t(m) Tt(x)
Y ies Par(T) wi(x)

Moreover, Proposition 4 ensures that lim, o P*(z) = P(0). Since for allt € S
quantities r¢(x) and wy(z) are continuous for z — 0, we have

lim H™(R, W) = H(NoF,R, W) .

HW(R, W)

Hence, for all s € S we have Hy(ProbF,R,W) > H(NoF,R,W). Since the
reverse inequality is immediate, we conclude

H,(ProbF,R,W) = H(NoF,R,W)

as was to be shown. The equivalent results for PathF and UnbF follow then
immediately by observing that ProbF C PathF and ProbF C UnbF. 1 1

7.1  Probabilistic fairness

If the MDP P is strongly connected, Proposition 14 and 15 provide a method
for the computation of Hy(ProbF, R,W) at all s € S. In the general case,
from (4) we see that the expected long-run average outcome depends only on
the states and actions that are repeated infinitely often. Theorem 4 states
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that these states and actions form a FEC with probability 1: hence, we can
concentrate our attention on the maximal FECs. Let

MFec(S,F) = L={(C1,D1),...,(Cn,Dy)},

and note that for 1 < i < n, the FEC (C;, D;) is a strongly connected sub-
MDPs of the global MDP. Hence, for 1 < i < n we can associate with (C;, D;)
the maximum long-run average outcome H'(NoF, R, W) that can be obtained
when staying forever in (C;, D;), computed using Proposition 14 and 15.

Once the maximum long-run average outcomes for the maximal FECs have
been computed, we can compute Hy(ProbF, R,W) at all s € S using an idea
that originates from [6]. For all 1 < i < n, we add to the MDP a special state
t;, which signals the intention to stay in (Cj;, D;) forever. For 1 < i < n, we
let A(t;) = {b;}, where b; is an action that leads back ¢;, i.e. dest(t;, b;) = {t;}.
The set of states {t1,...,t,} is thus absorbing. For all 1 < i < n and all
s € C;, we also add to A(s) a new action a; that leads deterministically to ¢;:
the choice of a; represents the decision of staying in (C;, D;) from that point
on. Finally, we associate with each state s € SU {t1,...,t,} and a € A(s) of
the new MDP a final reward h(s) defined by

h(s, a) = {Hi(NoF,R,W) ifseC;and a=a;, for1 <i<mn;
0 otherwise.
For 1 < i < n, the reward associated with a transition from C; to ¢; is
thus equal to the maximum long-run average reward that can be obtained by
staying in (C;, D;) forever; the reward h is 0 on all other transitions.

Denote by P[(Cy, Dy),...,(Cy, D,)] the MDP obtained from P in this
fashion. The following proposition states that the maximum long-run average
outcome Hy(ProbF, R, W) at all s € S can be computed by solving a maxi-
mum expected total reward problem on P[(Cy, Dy),...,(Cn, D,)], using h as
the reward.

Proposition 16  Let the MDP P[(Cy,D,),...,(Cy, D,)| and the reward h
be as described above. Then, for all s € S we have:

(17) H,(ProbF, R, W) = max E {; h( Xy, Yk)} :

where the max in (17) exists.

The maximum expected total cost mentioned in the proposition can be solved
in several ways: see for example [3] or, for more efficient algorithms tailored
to this type of problem, [8, §7][12].

Proof. On the one hand, consider a memoryless policy w, for the MDP
P[(Cy, Dy),...,(Cy, D,)] that realizes the maximum in the total cost problem
(17).

For 1 <17 < n, we can assume that if 7, chooses with positive probability
action a; at some state s € C;, then it chooses a; deterministically at all states
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of C;. In fact, assume towards the contradiction that at t € C; there is a
strictly better choice from the point of view of total cost. Since (Cj, D;) is
strongly connected, then a strictly better policy would be obtained by choosing
all actions in D; uniformly at random at all states of C;\ {¢}, until ¢ is reached,
and choosing the better choice at ¢, contradicting the hypothesis that . is
optimal.

For 0 < z < 1, from 7, we construct a memoryless policy m[z]| for P as
follows. Policy 7[z| coincides with 7, on all S\ |J, C;. For 1 <1i < n, if m,
does not choose a; at C;, then 7[z| coincides with 7, also on C;. If 7, chooses
a; in C;, for 1 < ¢ < n, then we take 7[z] to coincide with the probabilistically
fair z-optimal policy for (C;, D;), constructed as in the proof of Proposition 15.

On the basis of 7[z], for 0 < ¢ < 1 and 0 < z < 1 we construct a
memoryless policy 7[e, z] by, for all s € S and a € A(s),

rle. 2](s)(a) = {w[m](s) (a) if s € U?Zl C;
(1 —¢e)me(s)(a) +emp(s)(a) otherwise.
Using arguments similar to those for Propositions 10 and 15, it is not difficult
to prove that for all s € S, we have

lgnoll_r)%Hs[ ’ ](R’ W) - Es {;h(leYk)} ’
which leads to the result.

In the other direction, consider an arbitrary probabilistically fair policy .
Under policy 7, the paths are with probability 1 eventually confined to some
(Cy, D;) with 1 <4 < n. Once confined in (C;, D;), it is possible to prove that
7 cannot do better than H(NoF, R,W) (see [8] for a detailed argument).
Hence, for all s € S we have

HI(R,W) < Y H'(NoF, R,W)Pr (InfSA = SAPairs(C;, Dy)) ,
=1

and from this follows easily the result. 1 &

7.2 Path and unbounded fairness

Similarly to probabilistic fairness, also under path fairness the set of state-
action pairs that are repeated infinitely often along a path forms a FEC with
probability 1. Hence, we can repeat for path fairness the same reasoning done
in the previous subsection for probabilistic fairness. From the equality of the
algorithms for the computation of the maximum long-run average outcome for
these two notions of fairness, we obtain that for all s € S,

(18) H(ProbF,R,W) = Hy(PathF',R,W) ,
which is one part of Theorem 2, part (iii).
For unbounded fairness, Proposition 2 tells us that a path that enters an

EC can stay forever in the EC with probability arbitrarily close to 1, even if
the EC is not fair. This suggests that for dealing with unbounded fairness, the
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only modification needed to the algorithm of the previous section is to take
L = Mec(S) instead of £ = MFec(S), thus considering all ECs, including the
unfair ones. This intuition is confirmed by the following proposition.

Proposition 17  We have Hy(UnbF, R,W) = Hy(NoF, R,W) for all s € S.

Proof. The inequality Hy(UnbF, R,W) > H,(NoF, R, W) holds trivially for
all s € S. To show the converse inequality, the key step is to show that, given
an EC (C, D), we have a set of policies 7[z]| such that, for all ¢t € C,

(19) lim Hf (R, W) = H,(NoF, R, W)[(C, D)]

(20) lim Pri(Vk > 0. (X, e CAY, € D(Xy)) =1,

where Hy;(NoF, R,W)[(C, D)] refers to the maximum long-run average out-
come that can be obtained on the EC (C, D), rather than on the whole
MDP. To this end, let m4 be a memoryless policy such that H;/¢(R,W) =
Hi(NoF,R,W)[(C,D)] for all t € C. By definition, we have that

Pr?d(Vk >0. (Xk e CANY, € D(Xk)) =1.
For 0 < z <1, construct the policy 7[z] by
7T[33]($1, SRR Sk) = (]' - $)1/2k7rd(s/€) + (1 - (1 - x)l/Qk)ﬂ-f(sk)

for all £ > 1 and all sy, So,...,s, € C, and by 7[z](s1,...,s,) = mp for k> 1
and s, € C. A straightforward calculation shows that

Pr(Vk > 0. (X, € CAY € D(Xy) =1—=,

which shows (20). In addition, notice that policy 7[z] is a linear combination
of m4 and 7 that is always at least as close to 74 as (1 — z)my + zms. Hence,
(19) follows from the same arguments used to prove Proposition 15.

Once (19) and (20) have been proved, the results follows from considering
the MDP P[(C1, D), ..., (Cn, D,,)] obtained as for Proposition 16, except that
(C1,Dy),...,(Cy, D,) are the ECs (instead of the FECs) of the original MDP,
and that the final rewards are defined by h(s,a) = Hs(NoF, R,W)[(C, D)] for
all ECs (C, D) and all s € C, and h(s,a) = 0 otherwise. The result can be
obtained by reasoning as in the proof of Proposition 16. 1 1§

7.8 A counterexample to equality

To see that the inequality in Theorem 2, part (iii) cannot in general be replaced
by equality, consider the MDP P of Figure 3. We consider two functions R
and W, such that W is equal to 1 for all state-action pairs, and R is defined
by R(si,a) = R(s2,¢) = R(s3,d) = 0 and R(s2,b) = 1. Then, it is easy to
check that Hy,(NoF,R,W) =1 and H,, (ProbF,R,W) = 0.
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